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Abstract 

Purpose The multiple climate tipping points potential (MCTP) is a novel metric in life cycle 

assessment (LCA). It addresses the contribution of greenhouse gas emissions to disturb those 

processes in the Earth system, which could pass a tipping point and thereby trigger large, abrupt and 

potentially irreversible changes. The MCTP, however, does not represent ecosystems damage. Here, 

we further develop this midpoint metric by linking it to losses of terrestrial species biodiversity at 

either local or global scales.  
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Method A mathematical framework was developed to translate midpoint impacts to temperature 

increase, first, and then to potential loss of species resulting from the temperature increase, using 

available data on the potentially disappeared fraction of species due to a unit change in global average 

temperature.  

Results and discussion The resulting damage MCTP expresses the impacts on ecosystems quality in 

terms of potential loss of terrestrial species resulting from the contribution of GHG emissions to cross 

climatic tipping points. The MCTP values range from 2.3·10-17 to 1.1·10-15 PDF (potentially 

disappeared fraction of species) for the global scale and from 2.7·10-17 to 1.1·10-15 PDF per 1 kg of 

CO2 emitted for the local scale. They are time-dependent, and the largest values are found for 

emissions occurring between 2030-2045, generally declining for emissions occurring toward the end 

of the century.  

Conclusions The developed metric complements existing damage-level metrics used in LCA and its 

application is expected to be especially relevant for products where time-differentiation of emissions 

is possible. To enable direct comparisons between our damage MCTP and the damage caused by 

other environmental impacts or other climate-related impact categories, further efforts are needed to 

harmonize MCTP units with those of the compared damage metrics. 

 

Keywords 

Ecosystems damage modeling, climate tipping points, life cycle impact assessment, global species 

losses, local species losses, potential disappeared fraction  

 

1 Introduction 

Life cycle assessment (LCA) aims at quantifying the potential environmental impacts of a product or 

service over its full life cycle, from extraction of raw materials, through manufacturing and use, to 

end-of-life (Bjørn et al., 2018). During the life cycle impact assessment (LCIA) phase of an LCA, 

exchanges between environment and the product system (like emissions of greenhouse gases, GHG) 

are translated into potential environmental impacts using characterization factors (CF). These 
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exchanges are first summed up and then multiplied by the corresponding substance-specific CF, 

which represents the impact per unit of emission. CFs are calculated using a model of the underlying 

impact pathway that connects emissions to environmental damage. These express the potency of an 

emission in affecting an indicator of the state of the environment that is chosen to represent the 

environmental impact in question (Hauschild and Huijbregts, 2015). The indicator may be chosen at 

any point in the impact pathway between emissions and damage to the functioning of ecosystems or 

human health.  

In LCA, different types of environmental impacts are analyzed and climate change impacts 

from emissions of CO2 and other greenhouse gases released during products’ life cycles are often 

quantified. Emissions of GHGs lead to a change in radiative forcing, i.e. an increase in net energy 

trapped in the atmosphere, which in turn causes a rise in atmospheric global temperature, which 

finally causes damage to ecosystems. In this impact pathway, the change in radiative forcing caused 

by GHGs is typically taken as midpoint (i.e. located in the middle of the impact pathway) indicator of 

the state of the environment, whereas the final damage to ecosystems (or human health) resulting 

from the radiative forcing changes represents the endpoint indicator in LCA. The global warming 

potentials (GWP) proposed by the IPCC are used as midpoint CFs to express the change in radiative 

forcing induced by GHG emissions over a defined time horizon (typically 100 years) compared to the 

radiative forcing of carbon dioxide (CO2) over the same period (expressed in kg CO2 equivalents). To 

assess potential damage to ecosystems from GHG emissions, characterization factors modelled at 

damage (or endpoint) level are used. These are the damage-oriented GWP CFs (calculated as in 

Huijbregts et al. (2017) starting from the GWP), which allow translating radiative forcing into the 

resulting time-integrated change in global temperature and finally in damage to either terrestrial or 

freshwater ecosystems caused by the temperature change. 

Climate tipping is a relatively new impact category in LCIA (Fabbri et al., 2021; Jørgensen et 

al., 2014). It offers a complementary perspective to the climate change impact category represented by 

the GWPs, which consider the time-integrated radiative forcing change but do not link this change to 

potential crossing of climate tipping points. Indicators of climate tipping, the multiple climate tipping 

points potentials (MCTP), represent the contribution of a GHG emission to crossing climatic tipping 
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points (observed for processes of the Earth system which may pass a threshold that triggers large 

abrupt, potentially irreversible changes like change in surface albedo resulting from loss of Artic 

Summer see ice) (Lenton et al., 2008). In the MCTP approach, the contribution to cross tipping points 

is expressed as contribution of an emission to deplete the remaining carrying capacity of the 

atmosphere to absorb the GHG impact without crossing a tipping point. As explained in Fabbri et al. 

(2021), it was modelled by first computing the time-integrated radiative forcing increase from a unit 

emission of a greenhouse gas; secondly, by converting this radiative forcing increase to atmospheric 

CO2-equivalent concentration increase; and finally, by relating the resulting value with the remaining 

atmospheric capacity, i.e. the remaining increase in atmospheric CO2-equivalent concentration that 

can still take place without crossing a tipping point. The result indicates the fraction of remaining 

capacity occupied by the emission and is expressed as parts per trillion of remaining capacity per unit 

of GHG emission. The MCTP, however, expresses impacts only at the midpoint level, therefore 

further developments are necessary to link these midpoint impacts to damage to terrestrial 

ecosystems.  

In LCIA, damage modelling for ecosystems traditionally focuses on species biodiversity, and 

the potentially disappeared fraction of species (PDF) is the most common metric (Curran et al., 2011; 

Woods et al., 2018). As explained in Verones et al. (2020), exposure duration is also included in the 

unit of ecosystem damage, so resulting ecosystem damage is expressed as PDF·yr. It can be also 

expressed as species·yr, when species density and area of exposed ecosystem are known. As argued in 

Verones et al. (2020), damage scores in LCA should be interpreted as “an increase in global 

extinction risk over a certain exposure period of time and not so much as an instantaneous global 

species loss”. Current damage-oriented characterization factors express biodiversity loss at either 

local, or regional or global scales, and these are frequently mixed in LCIA methods (Verones et al., 

2020). A local (or regional) loss of species occurs within a spatially delimited area and can be 

reverted through repopulation. Global loss means that the species become extinct across the whole 

planet, and it is thus irreversible. This difference implies that a metric based on local species loss 

cannot be directly compared with one based on global losses. To avoid comparability issues, it is 

essential to clearly report at which level new metrics are developed (Jolliet et al., 2018). Local 
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assessments are important to ensure ecosystem functionality while global assessments are necessary 

to avoid irreversible extinction of species. Thus, the two measures complement each other and it has 

been argued that characterization factors addressing both scales should be developed for all impact 

categories (Jolliet et al., 2018; Purvis, 2020; Verones et al., 2020).  

The aim of this paper is to advance the climate tipping impact category in order to 

obtain multiple climate tipping points potential (MCTP) at endpoint (damage) level expressing 

damage to ecosystems, enabling comparison with other damage-oriented impacts. A framework for 

calculating endpoint MCTP characterization factors is presented for three greenhouse gases (CO2, 

methane (CH4) and nitrous oxide (N2O)), measuring biodiversity loss at either local or global scale. 

MCTP factors were computed for three Representative Concentration Pathways, RCP4.5, RCP6 and 

RCP8.5 representing possible future GHG emission trajectories for the world. The resulting 

characterization factors, referred to as MCTPendpoint, quantify potential damage to terrestrial 

ecosystems considering the risk of crossing multiple climatic tipping points. They can be directly 

applied in LCA studies to assess products and systems and here their application is illustrated with a 

simplified case study on degradable plastic polymers.  

 

2 Methods 

2.1 Impact pathway mechanisms 

The midpoint MCTP factor of a unit GHG emission represents the fraction of remaining capacity of 

the atmosphere to absorb emissions without passing a tipping point that is taken up by the unit 

emission and is expressed in parts per trillion of remaining capacity per unit emission of a greenhouse 

gas i (pptrc ∙ kgi
-1). The midpoint MCTP is then linked to temperature increase per fraction of carrying 

capacity taken up, and, further on in the impact pathway, to the potential loss of species biodiversity 

resulting from that temperature increase (see Fig. 1). Note, that in contrast to damage-oriented GWP 

CFs, which model impacts attributed to marginal GHG emissions (adding on top of the background 

emissions), damage modeling in the MCTP approach applies an average perspective by assuming that 

an increase in atmospheric CO2-equivalent concentration is part of the anthropogenic background. 
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Furthermore, the crossing of a given tipping point reduces the remaining carrying capacity for all 

subsequent tipping points. This corresponds to an additional temperature increase, which further 

contributes to loss of species diversity. Given the current lack of consistent estimates on the direct 

effects of crossing tipping points on species loss (through e.g. forest dieback or lengthening of the dry 

season), an impact pathway considering only effects from this additional temperature increase is 

developed here. The resulting potential loss of species is thus a function of the global temperature 

levels resulting from the background emissions and effects from crossing of tipping points on 

temperature increase. The MCTPendpoint CF represents the share that the characterized emission has in 

the total predicted species loss.  

 

Fig. 1 Impact pathway for climate tipping used for developing the multiple climate tipping points potential 

based on ecosystem damage. Climate tipping has both direct and indirect effects on terrestrial species. Only 

indirect effects through global temperature increase are covered in this study.   

 

2.2 Modelling framework 

The endpoint MCTP (MCTPendpoint in PDF∙kgi
-1) of a given GHG i emitted at year 𝑇emission is derived 

from the midpoint MCTP by using a ‘midpoint-to-endpoint’ factor: 

 

MCTPendpoint,𝑖 (𝑇emission) = MCTP𝑖 (𝑇emission) · 𝑀𝐸𝐹(𝑇emission)                                                         (1) 
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where MCTP𝑖  [pptrc∙kgi
-1] is the multiple climate tipping points potential at midpoint of gas i emitted 

at year 𝑇emission, and 𝑀𝐸𝐹 [PDF∙pptrc
-1] is the midpoint-to-endpoint factor, translating the impact 

from contribution to tipping of the emission at 𝑇emission to the potentially disappeared fraction of 

species [PDF] at either local or global level. Note, that unlike other damage-oriented CFs of climate 

impacts (including GWP), exposure duration is not included in the unit of our endpoint MCTP. The 

exposure duration is considered when computing time-integrated increase in CO2-equivalent 

concentration, but it cancels out when the impact is related to the carrying capacity of the atmosphere. 

Implications of this on the harmonization of metrics across impact categories will be discussed later 

(section 4.2). 

 

2.3 Multiple climate tipping potential at midpoint 

As in Fabbri et al. (2021), the multiple climate tipping points potential at midpoint, MCTPi, in 

[pptrc∙kgi
-1] (parts per trillion of remaining capacity taken up by a unit emission) of gas i emitted at 

year 𝑇emission is defined as the sum of the ratios between the impact of the emission and the 

corresponding remaining capacity for each of the m tipping points occurring after the emission year:  

 

MCTP𝑖(𝑇emission) = ∑
𝐼emission,𝑖,𝑗 (𝑇emission)

𝐶𝐴𝑃𝑗  (𝑇emission)

𝑚

𝑗=1

                                                                                          (2) 

 

where j indicates the jth tipping point occurring after the emission year (in order of occurrence) and 

can take any value from 1 to m, which is the total number of tipping points that are predicted to be 

crossed under the assumed background emission pathway (RCP); 𝐼emission,𝑖,𝑗 is the impact of the 

emission of gas i with respect to the jth tipping point, 𝐶𝐴𝑃𝑗 is the remaining capacity up to the jth 

tipping point, and the emission year 𝑇emission can be any year from 2021 (or the year when emissions 

are expected to start taking place) up to the year of the last tipping point.  

 Details of computing impact and remaining carrying capacity are presented in Fabbri et 

al. (2021). Briefly, the 𝐼emission,𝑖,𝑗 is computed as the radiative forcing of gas i (𝑅𝐹𝑖) integrated over 
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time between the emission and the tipping (referred to as the absolute climate tipping potential, 

ACTP) [W∙m-2 ∙yr∙kgi
-1] divided by the radiative efficiency (RE) of 1 ppm of CO2 [W·m-2 ·ppm CO2

-

1]. The 𝐶𝐴𝑃𝑗 [ppm CO2e·yr] represents the increase in atmospheric CO2-equivalent concentration that 

can still take place before reaching the concentration level (in ppm CO2e) that may trigger tipping j. 

This capacity depends on background anthropogenic emissions, and it can be reduced when preceding 

tipping points are crossed.  

 

2.4 Midpoint to endpoint factor 

The midpoint-to-endpoint factor, 𝑀𝐸𝐹(𝑇emission) as it depends on the emission year, is given by: 

 

𝑀𝐸𝐹(𝑇emission) =
∆𝑇𝐸𝑀𝑃(𝑇emission)

1 ∙ 1012
·

𝛥𝑃𝐷𝐹(𝑇emission)

∆𝑇𝐸𝑀𝑃(𝑇emission)
                                                                    (3) 

 

where 
∆𝑇𝐸𝑀𝑃(𝑇emission)

1∙1012  [°C∙pptrc
-1] is the global atmospheric temperature change (∆𝑇𝐸𝑀𝑃) resulting 

from one part per trillion reduction of the remaining capacity [pptrc] (i.e., per unit of the midpoint 

MCTP) and 
𝛥𝑃𝐷𝐹(𝑇emission)

∆𝑇𝐸𝑀𝑃(𝑇emission)
 [PDF∙°C-1] is the rate of potential species loss, at either global or local 

level (PDFglobal and PDFlocal respectively), per unit change in global average atmospheric temperature. 

The factor 1 ∙ 1012 [pptrc
-1] is needed to re-convert the midpoint MCTP𝑖 into unitless fraction of 

remaining capacity. Note that both ∆𝑇𝐸𝑀𝑃 and 𝛥𝑃𝐷𝐹 depend on the emission year.  

The factor 
∆𝑇𝐸𝑀𝑃(𝑇emission)

1∙1012  quantifies the link between the fraction of remaining 

capacity eaten up by the emission occurring at 𝑇emission (calculated by the midpoint MCTP) and the 

temperature increase associated with taking up that fraction of remaining capacity. To relate these two 

variables, we consider the overall remaining capacity from the emission year (𝑇emission) up to the 

year when the last possible tipping point is exceeded (under the assumed background emission 

pathway) and the average temperature change expected to occur over the same period (eq. 4).   
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∆𝑇𝐸𝑀𝑃(𝑇emission)

1 ∙ 1012
=

𝑇𝐸𝑀𝑃(𝑇tipping,𝑗last
) − 𝑇𝐸𝑀𝑃(𝑇emission)

1 ∙ 1012 
                                                             (4) 

 

where 𝑇𝐸𝑀𝑃(𝑇tipping,𝑗last
) is the temperature in the year when the last tipping point is exceeded and 

𝑇𝐸𝑀𝑃(𝑇emission) is the temperature in the emission year. ∆𝑇𝐸𝑀𝑃 results from the combination of 

the background evolution of GHG emissions according to the assumed background emission pathway 

and the effect of crossing tipping points. Note, that in eq. 4 the remaining capacity (1 ∙ 1012 pptrc) is 

independent of the emission year. It represents the total capacity that is left up to the last tipping point 

at each considered emission year. 

The factor 
𝛥𝑃𝐷𝐹(𝑇emission)

∆𝑇𝐸𝑀𝑃(𝑇emission)
 represents the rate of potential species loss per unit of 

temperature increase. The change in potentially disappeared fraction of species 𝛥𝑃𝐷𝐹(𝑇emission) is 

calculated as the difference between the foreseen fraction of species lost (𝐹lost) at the highest 

considered temperature increase, corresponding to that expected at the last tipping point, 

𝐹lost(𝑇tipping,𝑗last
), and the foreseen fraction of species lost at the emission year, 𝐹lost(𝑇emission) (eq. 

5). 

𝛥𝑃𝐷𝐹(𝑇emission)

∆𝑇𝐸𝑀𝑃(𝑇emission)
=

𝐹lost(𝑇tipping,𝑗last
) − 𝐹lost(𝑇emission)

𝑇𝐸𝑀𝑃(𝑇tipping,𝑗last
) − 𝑇𝐸𝑀𝑃(𝑇emission)

                                                             (5) 

 

Studies estimate that this rate is not constant but accelerates as global temperature levels rise (see 

section below). This acceleration is accounted for by calculating a different rate for each emission 

year, so that emissions occurring at higher levels of warming are attributed a higher potential fraction 

of species loss per unit of temperature increase caused by the emission. Note that the change in global 

atmospheric temperature over time (resulting from both background evolution of GHG concentrations 

and crossing of tipping points) is the only climatic parameter that influences the loss of species caused 

by a GHG emission. Other climatic variables, such as precipitation, were not directly considered due 

to the lack of a clear correlation between 1) changes in these climatic variables and their contribution 

to crossing tipping points and 2) the complementary effects that crossing tipping points has on these 

variables. 
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Following the approach developed in Fabbri et al. (2021) for calculation of midpoint 

MCTP, we consider model uncertainties in the exact location of the temperature thresholds that may 

trigger the identified potential tipping points. MCTPendpoint factors are thus computed as a function of 

the emission year using Monte Carlo simulation (10000 iterations), simulating possible developments 

with different timing and sequence of the tipping points. The considered tipping points are Arctic 

summer sea ice loss, Greenland ice sheet melt, West Antarctic ice sheet collapse, Amazon rainforest 

dieback, Boreal forest dieback, El Niño-Southern Oscillation change in amplitude, Permafrost loss, 

Arctic winter sea ice loss, Atlantic thermohaline circulation shutoff, North Atlantic subpolar gyre 

convection collapse, Sahara/Sahel and West African monsoon shift, Alpine glaciers loss, and Coral 

reefs deterioration (Lenton et al., 2008; Steffen et al., 2018). The uncertainties behind each of the 13 

tipping points and their implementation into the model are presented in Fabbri et al. (2021) and 

summarized in Table S1 in Supplementary Information-1. Results are given as the geometric mean of 

the MCTPendpoint factors calculated over 10000 iterations. 

 

2.5 Determination of temperature change  

Future temperature changes are obtained from the global mean temperature projections estimated 

starting from the Representative Concentration Pathways (RCPs) in Meinshausen et al. (2011). The 

choice of pathway, in particular the projected rate of GHGs concentration increase, strongly affects 

the magnitude and the trend of the midpoint MCTPs over emission time, potentially influencing the 

climate tipping performance of products (Fabbri et al., 2021). To reflect how this choice affects the 

damage due to GHG emissions, we consider the three pathways RCP4.5, RCP6 and RCP8.5 (numbers 

referring to the resulting radiative forcing [W∙m-2] in 2100) (van Vuuren et al., 2011). The lower 

emission path RCP2.6 is excluded as it is deemed unrealistic (Sanford et al., 2014; van Vliet et al., 

2009).  

In addition, we account for the potential temperature change caused by crossing tipping 

points, starting from the estimated CO2-equivalent concentration increase following tipping that was 

used for computing the midpoint MCTPs. This is relevant for eight of the thirteen tipping points 
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considered, as for the remaining five tipping points there is either lack of data on the consequences of 

tipping or lack of evidence that tipping could cause a temperature rise (Fabbri et al., 2021). The 

resulting global temperature rise is obtained by first adding this increment in CO2-equivalent 

concentration to the concentration level projected by the RCP, obtaining a new concentration profile. 

This new profile is then associated to the corresponding temperature profile derived from the RCP 

pathway. This implies that while the predicted warming based on the baseline RCP projection is 

anticipated, the maximum expected temperature increase will never exceed that projected by the RCP. 

Implications of this modeling choice will be discussed in the method’s limitations section (section 

4.3).  

 

2.6 Determination of fraction of species lost 

The potentially disappeared fraction of species per unit change in global average temperature, 

𝛥𝑃𝐷𝐹(𝑇emission)

∆𝑇𝐸𝑀𝑃(𝑇emission)
, is derived from studies that estimate species loss under a given emission pathway 

(Newbold, 2018; Urban, 2015). Here we consider both measures of local species loss, when species 

are lost locally but with possible reintroduction from neighboring regions, and global species loss, 

when species become globally extinct and there is no possibility for recolonization.  

Local species loss due to climate change is obtained from Newbold (2018), who 

calculated global average local losses of terrestrial vertebrate biodiversity for four RCP pathways. It 

was chosen as one of the most recent studies focusing on climate change effects on local biodiversity 

loss globally, from which it was possible to obtain sufficient data points to derive a curve relating 

average local losses of species to changes in global mean temperature. Newbold (2018) developed 

species distribution models (Elith and Leathwick, 2009) for approximately 20,000 species of 

amphibians, reptiles, mammals and birds, to estimate local losses (across 10-km2 grid cells) in 

response to climate change. These models relate estimates of species distributions across the entire 

terrestrial surface of the world to bioclimatic data within each 10-km2 grid cell, to predict species’ 

distributions under future climates (Newbold, 2018). Estimated local losses are averaged across all 

terrestrial areas of the world to obtain a global average. A species is considered lost from a certain 
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area when that area becomes climatically unsuitable for that species, offset by colonization of new 

species for which that area has become climatically suitable (as long as those species are estimated to 

be able to reach the area by dispersal). By combining the losses predicted based on the future 

evolution of four climate variables with the temperature change expected in 2070 under a given RCP, 

the study shows that temperature increases of 2, 3 and 4.3°C relative to 1960 – 1990 would lead, on 

average across terrestrial areas and assuming intermediate dispersal ability, to 3, 10 and 20% local 

loss of species, respectively.  

Global species loss is taken from a large synthesis of studies predicting extinction risk 

from climate change carried out in Urban (2015). This study was chosen as it provides the most 

comprehensive and recent estimates of global species loss from climate change and has already been 

used to develop damage-oriented GWP factors in the ReCiPe 2016 and LC-IMPACT methods 

(Huijbregts et al., 2017; Verones et al., 2020, 2019). Urban (2015) compiled 131 predictions covering 

seven taxonomic groups (plants, invertebrates, amphibians, reptiles, birds, mammals and including a 

few studies on fish), different dispersal abilities and different modeling techniques to derive the global 

mean extinction rate per unit of future global temperature rise. Global losses of 3, 5, 8, 16 and 21% 

are expected for temperature increases of respectively 0.8, 2, 3, 4.3 and 5°C above pre-industrial 

levels.  

To integrate the models of Newbold (2018) and Urban (2015) with our midpoint 

MCTP factors while enabling Monte Carlo simulations, simplified linear regressions were developed 

based on predictions from the original models of Newbold (2018) and Urban (2015). The regressions 

predict fraction of species lost (logit-transformed) from temperature change. Details of the regression 

analyses (i.e., logit-transformation, parameters of the fitted curve, goodness-of-fit statistics) are 

presented in the Supplementary Information-1 (section S2). Fig. 2 shows predictions of the regression 

models. Predictions at local and global scale show high similarity in trend and magnitude, implying 

that the resulting MCTPendpoint factors will not be significantly different from each other in terms of 

numerical values.  
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Fig. 2 Fraction of local and global species lost (𝐹lost) as a function of global temperature change above pre-

industrial levels, 𝑇𝐸𝑀𝑃. ‘Data from model’ refers to the pairs of values linking a change in species loss with a 

change in temperature retrieved from Newbold (2018) and Urban (2015) and found in Table S2 (in 

Supplementary Information-1). Since both reference studies for local and global species loss do not provide 

estimates beyond 5°C, computations of the MCTPendpoint under RCP8.5, which is the only pathway where 

temperature projections exceed 5°C, terminate at the year when the temperature level reaches 5°C in each 

iteration 

 

2.7 Case study 

Application of the MCTP characterization factors is expected to have particular relevance when 

studying the performance of products that have GHG emissions occurring over extended periods of 

time, such as slowly degrading plastics (Fabbri et al., 2021). We illustrate the application of the 

calculated MCTPendpoint factors in an illustrative case study on the end-of-life stage of four types of 

degradable plastic polymers. Details on the considered polymers, scenarios and assumptions are found 

in Fabbri et al. (2021), and an overview is provided in Table 1. Comparisons between the four plastics 

were made based on emissions of CO2 and/or CH4 resulting from either incineration or landfilling of 

an amount of plastic material containing 0.5 kg of carbon. Such a functional unit based on 

equivalence of the carbon content (and related emissions) between scenarios allows to highlight 

differences in emission timing that are relevant for application of the MCTP factors. Under the 
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anaerobic conditions typical of municipal landfills, the polymers degrade at different rates, from fast 

(90% degradation within 2 years) to very slow (1% degradation within 100 years), resulting in 

different CO2 and CH4 emission profiles derived from the carbon contained in the polymer (scenarios 

2-5 in Table 1). Degradation may also be delayed by several years in landfills (scenarios 6 and 7). In 

contrast, during incineration only CO2 emissions are released and all at the same time (scenario 1). 

These differences in emission timing are expected to influence the performance of the polymers when 

measured with the MCTP approach. Using the degradation rate constants of the polymers, yearly 

emitted quantities of GHGs are calculated, multiplied by the corresponding year-specific average 

MCTPendpoint factor per unit emission and summed over the period from the first GHG emission 

release (here assumed to be 2021) up to the last tipping point (𝑇tipping,𝑗last
) and over each GHG i. The 

result is the total impact score (IS) in terms of potentially disappeared fraction of species (PDF) from 

the end-of-life degradation of plastic (eq. 6): 

  

𝐼𝑆 = ∑ ∑ 𝑚𝑖(𝑇emission) · MCTPendpoint,𝑖(𝑇emission)

𝑇tipping,𝑗last

𝑇emission=2021𝑖

                                                           (6) 

 

where 𝑚𝑖(𝑇emission) is the mass of GHG i emitted at year 𝑇emission. Impact scores are calculated with 

the MCTPendpoint factors for both local and global species losses, and calculations are done with CFs 

representing each of the three RCPs. For comparison, we also compute impact scores using the 

complementary and most commonly used GWP-based metric of damage to terrestrial ecosystems 

(damage GWP) included in the LCIA method ReCiPe 2016, where metric scores are expressed in 

[species∙yr]. 
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Table 1 Overview of the seven scenarios considered for the case study with functional limit “average treatment 

of 0.5 kg carbon contained in the plastic material”. Adapted from Fabbri et al. (2021) 

Scenario Polymer Degradation rate 

constant, k (day-1) 

Note 

1. Incineration Generic fossil-based Not relevant All carbon contained in 

the polymer is released 

as CO2 in year 1 

Plastic degradation rate   

     2. Fast (90% degradation in 

         2 years) 

Polycaprolactone (PCL) 

– fossil-based 

2.97·10-3 (a) In total, 71% of the 

carbon is released as 

CO2 and 29% as CH4, in 

different years 

depending on the 

degradation rate  

constant (d) 

     3. Medium (90% 

         degradation in 31 years) 

Polybutylene succinate 

(PBS) fossil-based 

2.02·10-4 (b) 

     4. Slow (90% degradation 

         in 105 years) 

Polystyrene (PS) fossil-

based 

6.00·10-5 (c) 

     5. Very slow (1% 

         degradation in 100 years) 

Polylactic acid (PLA) – 

bio-based 

2.77·10-7 (d) 

Delayed degradation  

     6. After 20 years (fast rate) Polycaprolactone (PCL) 

– fossil-based 

2.97·10-3 (a) Degradation in landfill 

of the fast-degrading 

plastic (scenario 2) is 

assumed to be delayed 

by 20 and 50 years, 

respectively.  

     7. After 50 years (fast rate) Polycaprolactone (PCL) 

– fossil-based 

2.97·10-3 (a) 

(a) (Ishigaki et al., 2004); (b) (Cho et al., 2011); (c) (Tansel, 2019); (d) (Rossi et al., 2015).  

 

3 Results 

The complete set of MCTPendpoint values for CO2, CH4 and N2O calculated for each RCP pathway and 

expressed as either local or global species loss are presented in Supplementary Information-2 (Tables 

S1-S6). Here, only selected results for CO2 will be illustrated to facilitate their interpretation. Results 

for CO2 are first presented for a sample iteration (i.e. a Monte Carlo simulation representing a 

possible scenario in which nine different tipping elements cross their tipping point) under the RCP6 

pathway as an example. To illustrate the influence of the adopted approach on the final MCTPendpoint 

values, results are shown separately for all the factors underlying the calculation of MCTPendpoint. 

Next, results from 10000 Monte Carlo iterations accounting for current uncertainties in tipping 

occurrence are presented and compared between RCP pathways. Finally, main outcomes from the 

case study are presented. The MCTPendpoint values for CO2, CH4 and N2O can be found in 

Supplementary Information-2. 
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3.1 MTCPs for a sample iteration 

Fig. 3a shows MCTPendpoint factors for CO2 for a sample iteration in terms of both local and global 

fraction of species loss, as depending on the time when the CO2 emission occurs. The first observation 

is that MCTPendpoint factors are proportional to their corresponding midpoint MCTP (Fig. 3b) and 

follow a similar pattern. As already shown in Jørgensen et al. (2014) and Fabbri et al. (2021), 

midpoint MCTPs peak just before the passing of a tipping point, indicating that the contribution of an 

emission to cross the tipping point increases as the emission pathway approaches the tipping point. 

Here, the increase in MCTPendpoint suggests that an emission occurring before an expected tipping 

threshold has a higher potential to cause ecosystem damage due to its larger contribution to deplete 

the remaining capacity and cross the tipping point. On the contrary, emissions after the tipping point 

have smaller contribution to crossing subsequent tipping points. This is seen as a discontinuity in the 

MCTPendpoint curve. 

MCTPendpoint values generally increase until ca 2045, but they are almost 2 orders of 

magnitude lower for emissions occurring toward the end of the century. This decreasing trend is 

explained by the fact that the temperature change per fraction of remaining capacity taken up by the 

emission decreases as the emission occurs later in time. Therefore, despite the fact that the potential 

species loss per unit temperature increase, e.g. in 2070, is expected to be higher than that in 2035 (Fig. 

3c and Table S3 in Supplementary Information-1), the resulting damage from an emission in 2070 is 

lower than that in 2035 because the corresponding temperature change induced by that emission is 

also lower (Fig. 3d). This observation may seem counterintuitive if one would expect larger impact to 

be computed for emissions occurring later in time (consistently with Fig. 2) but is in line with an 

average approach to modeling of characterization factors for use in LCA. As argued in Fabbri et al. 

(2021), the MCTP factors represent average impact as they depend on the background level. Thus, 

averaging temperature change between emission year and year of the last tipping point (making the 

resulting ∆𝑇𝐸𝑀𝑃 decrease with later emission time) is necessary to calculate indicator scores for 

emissions occurring at that specific emission year. These emissions cannot be made responsible for 
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the temperature increase and resulting ecosystem damage that happened before the emission year of 

interest.  

Finally, MCTPendpoint factors calculated using local species loss estimates show little 

difference from those obtained using global species loss estimates. Results for local losses are 

maximum 13% larger and 5% smaller compared to results for global losses, depending on the 

emission time. However, we stress that their interpretation is not the same. Local losses represent 

potentially reversible damages through the loss of ecosystem functioning caused by local loss of 

species, whereas global extinctions represent irreversible losses of biodiversity (see Section 4.1 for 

further discussion).  

 

 

Fig. 3 (a) Endpoint MCTP (MCTPendpoint) for emission of 1 kg of CO2 expressed as Potentially Disappeared 

Fraction (PDF) of species at local (dashed line, left axis) and global (solid line, right axis) level in a sample 

iteration under RCP6. Note that differences between the two curves are so small that they appear mostly 

overlapping. (b) Midpoint MCTP for emission of 1 kg of CO2. (c) Potentially Disappeared Fraction of species 
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(PDF) at local (dashed line, left axis) and global (solid line, right axis) level per degree Celsius increase in 

global temperature. (d) Temperature change per fraction of remaining capacity. Specific results for three 

different emission times are reported in Table S3 in Supplementary Information-1  

 

3.2 Uncertainty and sensitivity  

When uncertainties about occurrence and timing of tipping points are accounted for with Monte Carlo 

simulations, average (geometric mean) MCTPendpoint factors for both local and global species losses 

are somewhat smoothened compared to a single iteration, indicating that uncertainties in the exact 

location of the tipping point are so large that single tipping events are not clearly distinguishable (Fig. 

4). Nevertheless, the fluctuations of the factors over time indicate that it is still possible to identify 

periods with larger probability of crossing tipping points in proximity of the observed peaks. This 

shows that, despite the uncertainties, impacts, and thus our CFs, still depend on the specific timing of 

GHG emissions and thus on the proximity to tipping points. These findings are consistent with 

observations noted in Fabbri et al. (2021) for the midpoint MCTP. Emissions between 2040 and 2060 

have the largest potential to cause species loss as a consequence of crossing tipping points assuming 

RCP6. The sharp peak around years 2050-2055 indicates that uncertainty around the tipping is lower 

here, making the potential tipping time more identifiable. After this period, potential damage per unit 

emission decreases, confirming the trend observed in the sample iteration. Average MCTPendpoint 

factors calculated for local and global species losses are numerically similar. Under RCP6, average 

(geometric mean) MCTPendpoint factors based on local species loss range between 2.7·10-17 and 1.1·10-

15 PDF per 1 kg of CO2, depending on the year of emission, with 90% of the iterations oscillating 

between 2.2·10-17 and 2.3·10-15 PDF per unit emission (Fig. 4a). The MCTPendpoint factors for global 

species losses can be up to 5% larger and 13% lower than results for local species loss, depending on 

the emission year. 

The comparison between RCP pathways shows that potential local and global species 

losses per kg of CO2 emitted are generally larger under RCP8.5 and lower under RCP4.5. MCTPendpoint 

factors for local species losses can be up to 4 and 87 times larger (depending on emission time) under 
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RCP8.5 compared to RCP6 and RCP4.5, respectively, whereas for global species losses they are up to 

3 and 35 times larger than the other two pathways. This is consistent with expectations that more 

species will be lost at higher temperature levels. Larger impacts under RCP8.5, in terms of 

contribution of a GHG emission to crossing tipping points, were also found in Jørgensen et al. (2014), 

who studied the influence of RCP pathway on their developed midpoint climate tipping metric. This 

was due to the higher GHG concentration levels projected in this pathway, which reduced the 

remaining atmospheric capacity up to the considered tipping point (Arctic summer sea ice). 

Conversely, the result is in contrast with what reported in Fabbri et al. (2021), where midpoint 

MCTPs for RCP8.5 were lower than those for RCP4.5. This reflects the inability of the midpoint 

MTCPs to represent the potential larger impacts when temperature projections are higher and 

highlights the relevance of performing damage modelling as presented here.  

The different trends observed in the three RCPs are mainly explained by the different 

number and timing of occurring tipping points, which in turn are determined by the level and 

evolution of the global temperature projected in each RCP (see Table S1 in Supplementary 

Information-1 for occurrence of tipping points depending on the RCPs). Under RCP8.5 impacts are 

larger for emissions occurring within 2045, because a larger number of tipping points is expected to 

be crossed within this period due to the rapid increase in temperatures projected in this pathway. The 

number of potential tipping points in RCP6 and RCP4.5 is progressively lower, and their occurrence 

is slightly postponed due to the lower rate of temperature increase (particularly for RCP6). Similar 

trends are observed for CH4 and N2O, and MCTPendpoint values for these two gases are on average 83 

and 273 times larger, respectively, compared to those of CO2 (Fig. S1) 
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Fig. 4 Average (geometric mean) endpoint MCTP (MCTPendpoint) of 1 kg of CO2 based on local (a) and global 

(b) species loss (solid lines) and corresponding uncertainty ranges (shaded areas enclosed between the 5th and 

95th percentiles) calculated under RCP4.5, RCP6 and RCP8.5.  

 

3.3 Findings from a case study 

Ranking between plastic end-of-life scenarios obtained with the MCTPendpoint calculated in this study 

shows some differences when compared to ranking using the damage GWP-based metric (Table 2). 

For the damage GWP, the lowest impacts are calculated when the plastic material degrades slowly 

enough so that the amount of GHGs emitted in 100 years is at a minimum, explaining why the very 

slowly and the fast-degrading plastics are the best and the worst scenarios respectively. This is also 

the case for our MCTPendpoint (for both local and global species losses) for very slowly degrading 

plastic, which is seen to have lowest impacts due to the very low amounts of GHGs emitted. 

However, contrary to the GWP, where impacts are rather insensitive to biodegradation kinetics, 

climate tipping impacts also depend on emission timing, and are largest when emissions occur at the 

point in time where their contribution to cross tipping points is the largest (2040-2060). This 

corresponds to fast biodegradation rate with a lag phase, followed by the scenario with medium 

biodegradation rate without a lag. These findings however do not necessarily show that slower 

degrading materials are always a better option (indeed the opposite is observed when comparing 

scenarios 2 and 4 under RCP6), but rather show that the performance depends on proximity of 

emissions to expected occurrence of tipping points. Ranking of scenarios from fast to slow 



21 

 

degradation rate differs slightly among the three RCP pathways, but the overall trends are the same, 

i.e. scenarios 3 (medium rate degradation) and 6 (20-years delayed degradation) are seen as the worst. 

The main difference here between RCP pathways is that MCTPendpoint scores calculated under RCP8.5 

are always higher than scores under the other two RCP pathways, reflecting potentially larger species 

loss in a high emissions pathway and, thus, the dependency of the product’s performance on the 

chosen emission path. 

 

Table 2 Total impact scores per functional unit (f.u.) for the considered end-of-life scenarios according to 

endpoint MCTP (MCTPendpoint) for both local and global species losses and the complementary metric of damage 

to ecosystems from ReCiPe 2016. The sequence green – yellow – red shading indicates ranking between 

scenarios (within columns), from lowest (green) to highest (red) impact scores  

Scenario 

MCTPendpoint for local species losses  

(PDFlocal/f.u.)  

MCTPendpoint for global species losses  

(PDFglobal/f.u.) 
Damage GWP 

(ReCiPe 2016) 

(Species ∙ yr/f.u.) RCP4.5 RCP6 RCP8.5 RCP4.5 RCP6 RCP8.5 

1. Incineration 4.1E-16 1.2E-15 3.7E-15 5.0E-16 1.2E-15 3.2E-15 5.1E-09 

Plastic 

degradation rate 
       

   2. Fast 3.3E-15 7.8E-15 3.0E-14 4.0E-15 8.2E-15 2.6E-14 2.3E-08 

   3. Medium 4.2E-15 1.2E-14 4.3E-14 5.0E-15 1.2E-14 3.7E-14 2.3E-08 

   4. Slow 2.7E-15 1.0E-14 3.0E-14 3.2E-15 1.0E-14 2.5E-14 2.1E-08 

   5. Very slow 2.0E-17 9.0E-17 2.3E-16 2.3E-17 8.9E-17 1.9E-16 2.2E-10 

Delayed 

degradation 
       

   6. After 20 

years (fast rate) 
5.6E-15 1.7E-14 5.7E-14 6.5E-15 1.7E-14 4.8E-14 2.3E-08 

   7. After 50 

years (fast rate) 
1.2E-15 9.1E-15 2.7E-14 1.5E-15 8.7E-15 2.1E-14 2.3E-08 

 

 

4 Discussion 

4.1 Metrics based on ecosystem damage 

The MCTPendpoint factors calculated here measure the potential loss of species biodiversity from a 

GHG emission that contributes to passing climate tipping points. We emphasize that this potential 

species loss should be seen as the translation of the contribution of an emission to tipping (expressed 
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at midpoint level) into the resulting potential loss of species. The focus here is on impacts through 

contributions to climate tipping and not on assessing the biodiversity loss from GHG emissions 

through the time-integrated radiative forcing impact pathway (linking radiative forcing change to 

time-integrated temperature change and to final species loss) that is represented by the GWP-based 

metric for ecosystem damage. Similarly, it is not the aim of the present method to assess tipping 

points for critical loss of species. 

In our model we have accounted for the acceleration of species loss with increasing 

temperature levels in line with recent estimates (Newbold, 2018; Urban, 2015). Thus, we could have 

expected the impact on species to be larger for future emissions (i.e. occurring at higher levels of 

warming) than for emissions today, returning increasing MCTPendpoint results over time. However, we 

found that this acceleration is counteracted by the simultaneous decline in the contribution of an 

emission to temperature rise over time. As a unit emission of CO2 leads to a lower temperature 

increase when emitted closer to the year of the last tipping point, in line with the average approach to 

modelling characterization factors, it follows that the impact on species diversity can be 

proportionally lower for emissions occurring later, toward the end of the century. Therefore, the 

resulting decrease in MCTPendpoint factors should not be interpreted as, e.g., lower sensitivity of the 

climate to future emissions or other climate related mechanisms.  

In contrast to other endpoint metrics (including damage GWP) that assess effects of 

GHG emissions on biodiversity in LCA, the MCTPendpoint introduces a temporal perspective also in the 

midpoint to endpoint factor. As a consequence, the MCTPendpoint for a specific gas depends on the 

emission year. The results from the case study suggest that use of the new metric gives additional 

insights about the performance of the compared products, capturing larger potential impacts when 

emissions from the product occur in periods when probability of tipping points is the largest (between 

2040 and 2060 under RCP6), distinguishing it from the damage GWP. This finding is in line with 

what was found when applying the CFs at the midpoint level (Fabbri et al., 2021).  

We find little difference between the MCTPendpoint factors that express local and global 

species losses. This is due to the similarity of the curves used to describe local and global species loss 

as function of temperature rise (Fig. 2). This observation seems at odds with the expectation that local 
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losses should be larger than global because a substantial local loss of species is likely to occur before 

those species start becoming globally extinct. However, the outcome depends on the spatial 

distribution of species and on which species are lost first. For instance, if the loss involves very 

narrowly distributed species, then global extinctions could become high without having a large impact 

on local diversity. Furthermore, the inclusion of some data on fish species (from 10 out of 131 

assessed studies) slightly alters the representativeness of the study of Urban (2015) for modeling 

terrestrial species losses and may have an influence on the similarity between local and global level 

results. Finally, an additional reason could be that the estimates of global losses from the study of 

Urban (2015), which were extrapolated from local and regional studies, are, in reality, more 

representative for local species losses, explaining the similarity with figures from Newbold (2018).  

 

4.2 Applicability in life cycle assessment 

The emission year-specific MCTPendpoint factors for the three gases (CO2, CH4 and N2O) provided here 

(Supplementary Information-2, Tables S1-S6) are directly applicable in LCA studies to assess the 

potential species loss stemming from the life cycle of products or services. The added value of the 

MCTPendpoint compared to other damage metrics used in LCA is to consider that larger potential 

impacts on species could occur when emissions are released in periods with higher probability of 

crossing tipping points. As opposite, tipping points and the dependency of impacts on emission timing 

are ignored in other PDF-based calculations. This revealed new insights about the performance of 

different plastics when compared to the damage GWP metric, highlighting the relevance of 

considering climate tipping as a separate impact category. This has also the advantage of showing 

when emissions associated to product life cycles should be mostly avoided, through e.g. carbon 

storage in products, which could potentially delay the tipping and allow implementation of climate 

change mitigation and/or adaptation solutions. As for the midpoint MCTP, use of MCTPendpoint is 

relevant when a time-differentiated inventory is available for the assessed products. However, since 

temporarily disaggregated inventories are not yet easy to implement into dominant LCA software, 

calculation of MCTPendpoint impact scores (through eq. 6) has to be conducted offline. For situations 
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where temporal disaggregation of the inventories is not deemed relevant, we recommend using 

MCTPendpoint factors calculated for single year (e.g. 2021) to match with aggregated emissions for the 

same year.  

Advancing the midpoint MCTP to endpoint level should ideally allow for comparison 

with the damage caused by other environmental impacts, such as eutrophication or ecotoxicity but 

also other climate-related impact categories (such as those based on the GWP). For instance, 

comparison of our MCTPendpoint for global species losses with the damage GWPs from ReCiPe 2016 

could be possible as the species loss considered in both MCTP and GWP-based methods are based on 

global extinction risks of Urban (2015). However, for direct comparisons harmonization of units is 

required. This requires two steps. In the first step, conversion of the potentially disappeared fraction 

of species (used in MCTPendpoint) to absolute number of species (used in methods such as ReCiPe 

2016) is needed. For MCTPendpoint factors expressing global species losses, this can be done by 

multiplying the final MCTPendpoint impact score of the assessed product (calculated through eq. 6) with 

the total number of terrestrial species on the planet. This value is estimated to be approximately 6.5 

million (Mora et al., 2011), of which 1.6 million are the species that have been classified (Goedkoop 

et al., 2009). Even though the former value would be recommended as it gives a more realistic 

measure of species diversity, the latter should be used when the purpose is to compare with ReCiPe 

2016 (as this is the value adopted in ReCiPe). Conversion to absolute losses for the MCTPendpoint 

factors expressing local species losses is considered less relevant for comparisons with other impact 

categories, due to lack of existing damage metrics expressed as absolute local species losses, and thus 

it was not carried out here. We stress however that in this case a different calculation approach would 

be needed. It would require recalculation of the MCTPendpoint factors using estimates of absolute 

(rather than fractional) local species losses per temperature change, obtained as an average over each 

grid cell considered in Newbold (2018).  

The second step addresses the time (exposure duration), which is not explicit in the 

MCTPendpoint unit. Other damage-oriented CFs include a time dimension when expressing impacts on 

biodiversity, e.g., species∙yr (ReCiPe 2016) or PDF∙yr (LC-IMPACT), which may represent the 

duration (in years) of the period of exposure to the pressure (e.g. the residence time of the emission in 
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the environment). To harmonize the units of the MCTPendpoint with other damage-oriented metrics, an 

idea could be to multiply the MCTPendpoint impact scores (in either PDF or species) by the total number 

of years from the first emission up to the last expected tipping point in each RCP pathway. This 

number corresponds to 70, 97 and 85 years for RCP4.5, RCP6 and RCP8.5, respectively, for 

emissions starting in year 2021. We recall that in RCP4.5 the global temperature starts to stabilize at 

around 2.5° C within 70 years, meaning that tipping points expected at higher temperature levels 

cannot occur after this time, whereas for the other two pathways the temperature projections keep 

increasing and later tipping points could be expected. The resulting MCTPendpoint impact scores for the 

case study therefore become 2-3 orders magnitude higher when compared to scores obtained using 

damage GWPs.  

 

4.3 Limitations 

One limitation in the midpoint to endpoint factor is that the uncertainties related to estimation of 

species loss with temperature change were not considered. Accounting for modelling uncertainties 

Newbold (2018) reports that temperature increases between 2.5 and 4.8°C (relative to pre-industrial) 

would lead to changes in local species numbers ranging between a 2% gain and 47% loss (overall 

figures across all used RCP scenarios and species distribution modelling algorithms). For global 

species losses, uncertainties across the individual studies considered by Urban (2015) for similar 

temperature increases (2 - 4.3°C relative to pre-industrial) range from about 4 to 20%.  

Second, given the dependency of the damage MCTP factors on the number of 

considered climate tipping points, a limitation is our lack of knowledge about all potential present and 

future tipping points. Our framework uses the current knowledge about tipping points, but it can be 

readily updated when additional potential tipping points are discovered. 

A third limitation is the inability of the damage MCTP factors to capture the full 

impacts from climate tipping. The models used to estimate species loss only capture direct effects of 

temperature increases, and do not consider other impacts of crossing the tipping points, such as major 

biome shifts, monsoon shifts or Amazon forest dieback. The way in which species could respond to, 
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e.g. a recurring ice-free summer in the Arctic, or a gradual but irreversible dieback of the Amazon 

forest is difficult to predict (Post et al., 2009). Several models assessing the impacts of future climate 

change on biodiversity have been developed (see e.g. Pearson and Dawson, 2003; Thuiller et al., 

2013), but estimates of the consequences of specific tipping events are lacking or incomplete. For this, 

direct impacts such as those derived from loss or degradation of the natural habitat of species, e.g., 

biodiversity loss from forest dieback or intensified droughts, and the influence that these may have on 

the fraction of species loss per unit of temperature increase were not considered. This implies that the 

impacts calculated through the damage MCTP factors are probably underestimated. 

Fourth, there is a limitation in the way in which the temperature rise following a 

tipping event was determined. This measure depends on several uncertain factors, such as the 

potential consequences on the climate from tipping, the rate at which the consequences unfold and the 

response of the climate to these changes. We used available estimates of carbon emissions and 

relative radiative forcing change caused by tipping, but no uncertainty estimates were included as they 

are rarely available. In addition, the approach adopted to calculate the temperature increase following 

carbon emissions, which in practice assumes that temperature increases faster but never exceeding the 

projection of each RCP pathway, is an oversimplification of the climate mechanisms involved. A 

more appropriate measure would require the use of climate models simulating the climate-carbon-

cycle system, such as Earth system models (ESMs) (Millar et al., 2017). The main implication of 

these model limitations is to underestimate the potential temperature increase induced by passing 

tipping points, which could actually rise above RCP projections, and, consequently, indicate an 

underestimation of the resulting loss of species. This may affect the magnitude of MCTPendpoint factors 

to some extent, but it is not expected to change the observed overall trends. 

 

4.3.1 Priorities for further developments 

As every biodiversity loss metric focusing only on the loss of species diversity, our metric assigns an 

equal weight to all species without considering e.g. the functional role that species play in the 

ecosystem, assuming that the damage to biodiversity is independent of which species are lost. 
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However, in terms of consequences for the natural ecosystems, it is not given that all species should 

be weighted equally, and furthermore it is not given that species which remain in the future should 

have the same weight as species living today. For example, losing species in the future, when many 

others have already disappeared, may compromise the ecosystems’ functions more severely than 

when species diversity is still (relatively) high, as of today. Further, the loss of keystone species, 

playing a critical role in the ecosystem, may weight more than a larger decline of species performing 

less crucial functions. Complex interactions exist between species in ecological communities and, for 

this, the loss of certain critical species from a community could cause a cascade of secondary 

extinctions of many other species (Brodie et al., 2014; Dunne and Williams, 2009). Ideally these 

dynamics could be included in our metric by introducing a severity factor in eq. 1, providing a 

measure of severity of the damage. As the current ability to predict these mechanisms in the ecology 

and climate fields is rather limited, however, calculation of such a severity factor is not 

straightforward.  

 

5 Conclusions  

Our work is the first attempt to link midpoint multiple climate tipping points metrics of GHG 

emissions to loss of terrestrial species biodiversity at local and global scales. The developed 

MCTPendpoint metric attributes a larger potential species loss to emissions occurring when their 

contribution to crossing tipping points is higher, given that crossing could intensify warming and 

further exacerbate species loss. Therefore, the main advantage of the MCTPendpoint compared to the 

midpoint MCTP is to express impacts in terms of damage to terrestrial species. Overall, MCTPendpoint 

values decrease over time, meaning that emissions occurring later in the century are attributed a lower 

potential species loss. This decline is found to depend on the decreasing contribution of emissions to 

temperature rise over time, even though acceleration of species loss with increasing temperature 

levels has been accounted for.  

The MCTPendpoint can be used in LCA to assess the potential loss of terrestrial species 

stemming from the life cycle of products. Application of the metric is considered particularly valuable 
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for products where time-differentiation of emissions is relevant, such as biodegradable plastics or 

deteriorating wooden products. The MCTPendpoint complements existing damage-level metrics used in 

LCIA and we therefore recommend including it as new damage category. For consistency with other 

damage metrics expressing global species loss impacts, we recommend using MCTPendpoint values 

predicting global species loss. It is also recommended to present results for all three considered RCP 

scenarios as a sensitivity analysis. Differences in how time is treated in MCTPendpoint, however, when 

compared to other damage metrics used in LCA warrant further harmonization efforts. In the broader 

LCA context, our MCTPendpoint penalizes emissions occurring closer to tipping points, particularly 

those occurring between 2040 and 2060. Their use thus aims to discourage emissions attributed to 

product life cycles that will occur when they matter most and result in largest damage, offering the 

possibility to postpone the tipping, e.g. through carbon storage in products, thus buying time for the 

implementation of climate change mitigation and/or adaptation solutions (Jørgensen et al., 2015).  
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